论文标题

气象卫星图像基于深度多尺度外推融合的预测

Meteorological Satellite Images Prediction Based on Deep Multi-scales Extrapolation Fusion

论文作者

Huang, Fang, Cheng, Wencong, Wang, PanFeng, Wang, ZhiGang, He, HongHong

论文摘要

气象卫星图像对于气象学家至关重要。数据在监视和分析天气和气候变化方面起着重要作用。但是,卫星图像是一种观察数据,在将数据传输到地球时存在很大的时间延迟。重要的是要对气象卫星图像进行准确的预测,尤其是提前2个小时的象征预测。近年来,人们对基于深度学习的天气雷达图像的预测应用的研究越来越兴趣。与天气雷达图像预测问题相比,气象卫星图像预测的主要挑战是大规模观察区域,因此观察产物的大小很大。在这里,我们提出了一种深层的多尺度外推融合方法,以解决气象卫星图像的挑战。首先,我们将具有较大尺寸的原始卫星图像数据集简单采样到具有较小分辨率的几个图像数据集,然后我们使用深层时空序列预测方法来生成具有不同分辨率的多尺度预测图像。其次,我们通过条件生成对抗网络将多尺度预测结果与原始大小融合到定位预测图像。基于FY-4A气象卫星数据的实验表明,所提出的方法可以生成逼真的预测图像,从而有效地详细捕获天气系统的演变。我们认为,这项工作的一般思想可以潜在地应用于具有较大尺寸的其他时空序列预测任务。

Meteorological satellite imagery is critical for meteorologists. The data have played an important role in monitoring and analyzing weather and climate changes. However, satellite imagery is a kind of observation data and exists a significant time delay when transmitting the data back to Earth. It is important to make accurate predictions for meteorological satellite images, especially the nowcasting prediction up to 2 hours ahead. In recent years, there has been growing interest in the research of nowcasting prediction applications of weather radar images based on deep learning. Compared to the weather radar images prediction problem, the main challenge for meteorological satellite images prediction is the large-scale observation areas and therefore the large sizes of the observation products. Here we present a deep multi-scales extrapolation fusion method, to address the challenge of the meteorological satellite images nowcasting prediction. First, we downsample the original satellite images dataset with large size to several images datasets with smaller resolutions, then we use a deep spatiotemporal sequences prediction method to generate the multi-scales prediction images with different resolutions separately. Second, we fuse the multi-scales prediction results to the targeting prediction images with the original size by a conditional generative adversarial network. The experiments based on the FY-4A meteorological satellite data show that the proposed method can generate realistic prediction images that effectively capture the evolutions of the weather systems in detail. We believe that the general idea of this work can be potentially applied to other spatiotemporal sequence prediction tasks with a large size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源