论文标题

RNA序列数据的非参数聚类

Nonparametric clustering of RNA-sequencing data

论文作者

Lozano, Gabriel, Atallah, Nadia, Levine, Michael

论文摘要

在转录组数据中识别共表达基因的簇是一项艰巨的任务。用于此目的的大多数算法都可以分为两个广泛的类别:基于距离或基于模型的方法。基于距离的方法通常会在数据对象对之间利用距离函数,将相似对象组合在一起。基于模型的方法基于使用混合模型框架。与基于距离的方法相比,基于模型的方法提供了更好的解释性,因为每个集群都可以根据建议的模型明确表征。但是,这些模型在识别混合物可以基于的正确的多元分布方面存在一个特殊的困难。在此手稿中,我们首先回顾了用于选择所需混合模型的分布的一些方法。然后,我们建议通过使用非参数MSL(最大平滑可能性)算法来避免此问题。该算法是在统计文献中提出的,但据我们所知,并非适用于转录组学数据。这种方法的显着特征是,它避免了完全对个体生物样品的分布的明确规范,从而使从业者的任务更加容易。当在真实数据集上使用时,该算法会产生大量具有生物学意义的簇,并与常用于RNA-Seq数据聚类的其他两个基于混合物的算法进行比较。我们的代码可在https://github.com/matematikoi/non_parametric_clustering的GitHub公开获得。

Identification of clusters of co-expressed genes in transcriptomic data is a difficult task. Most algorithms used for this purpose can be classified into two broad categories: distance-based or model-based approaches. Distance-based approaches typically utilize a distance function between pairs of data objects and group similar objects together into clusters. Model-based approaches are based on using the mixture-modeling framework. Compared to distance-based approaches, model-based approaches offer better interpretability because each cluster can be explicitly characterized in terms of the proposed model. However, these models present a particular difficulty in identifying a correct multivariate distribution that a mixture can be based upon. In this manuscript, we review some of the approaches used to select a distribution for the needed mixture model first. Then, we propose avoiding this problem altogether by using a nonparametric MSL (Maximum Smoothed Likelihood) algorithm. This algorithm was proposed earlier in statistical literature but has not been, to the best of our knowledge, applied to transcriptomics data. The salient feature of this approach is that it avoids explicit specification of distributions of individual biological samples altogether, thus making the task of a practitioner easier. When used on a real dataset, the algorithm produces a large number of biologically meaningful clusters and compares favorably to the two other mixture-based algorithms commonly used for RNA-seq data clustering. Our code is publicly available in Github at https://github.com/Matematikoi/non_parametric_clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源