论文标题

迈向关键和超临界电磁场

Towards critical and supercritical electromagnetic fields

论文作者

Marklund, M., Blackburn, T. G., Gonoskov, A., Magnusson, J., Bulanov, S. S., Ilderton, A.

论文摘要

在基本物理系统中非线性现象的研究和应用中,激光生成的电磁场的可用性是持续的进步,从分子和原子到相对论等离子体和量子电动力学。这就提出了一个问题:我们将能够与未来的激光器相处多远?一个激动人心的前景是实现实验室框架中的Schwinger关键场$ e_ \ text {cr} $的现场优势,使得到达了场$ e^2 -c^2b^2b^2> e_ \ text {cr}^2 $。这样做的可行性受到了质疑,基于级联的致密电子脉络膜等离子体的产生将不可避免地导致入射光吸收或筛选。在这里,我们通过将多个碰撞激光脉冲的概念与通过量身定制的激光 - 播相互作用相结合的概念来讨论未来激光器克服此类障碍的潜力。这将电磁场能量压缩到纳米尺寸和Attosend持续时间的区域,从而增加了固定功率的场幅度,但也抑制了Pair Pair Cascades。我们的结果表明,10-PW级激光设施可以达到$ e_ \ text {cr} $。这种情况为先前认为仅在宇宙中最极端环境中发生的现象的实验研究开辟了前景。

The availability of ever stronger, laser-generated electromagnetic fields underpins continuing progress in the study and application of nonlinear phenomena in basic physical systems, ranging from molecules and atoms to relativistic plasmas and quantum electrodynamics. This raises the question: how far will we be able to go with future lasers? One exciting prospect is the attainment of field strengths approaching the Schwinger critical field $E_\text{cr}$ in the laboratory frame, such that the field invariant $E^2 - c^2B^2 > E_\text{cr}^2$ is reached. The feasibility of doing so has been questioned, on the basis that cascade generation of dense electron-positron plasma would inevitably lead to absorption or screening of the incident light. Here we discuss the potential for future lasers to overcome such obstacles, by combining the concept of multiple colliding laser pulses with that of frequency upshifting via a tailored laser-plasma interaction. This compresses the electromagnetic field energy into a region of nanometer size and attosecond duration, which increases the field magnitude at fixed power but also suppresses pair cascades. Our results indicate that 10-PW-class laser facilities could be capable of reaching $E_\text{cr}$. Such a scenario opens up prospects for experimental investigation of phenomena previously considered to occur only in the most extreme environments in the Universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源