论文标题

基于深度学习和统计指标的多阶段大细分市场归纳框架

Multistage Large Segment Imputation Framework Based on Deep Learning and Statistic Metrics

论文作者

Yang, JinSheng, Shao, YuanHai, Li, ChunNa, Wang, Wensi

论文摘要

缺失价值是传感器中非常普遍且不可避免的问题,研究人员已经进行了许多尝试丢失价值的尝试,尤其是在深度学习模型中。但是,对于实际传感器数据,很少考虑特定的数据分布和数据周期,因此很难为不同传感器选择适当的评估索引和模型。为了解决这个问题,本研究提出了一个基于深度学习的多阶段插补框架,并适应缺失价值归纳。该模型提出了数据分布的低阶和高阶统计数据的混合测量指数,以及对数据插补性能指标的新观点,该指标比传统的平均平方误差更适应性和有效。多阶段的归档策略和动态数据长度被引入数据周期的插补过程中。对不同类型的传感器数据的实验结果表明,多阶段的归合策略和混合指数是优越的,并且缺失价值插补的效果在某种程度上得到了改善,尤其是对于大片段归合问题。代码和实验结果已上传到GitHub。

Missing value is a very common and unavoidable problem in sensors, and researchers have made numerous attempts for missing value imputation, particularly in deep learning models. However, for real sensor data, the specific data distribution and data periods are rarely considered, making it difficult to choose the appropriate evaluation indexes and models for different sensors. To address this issue, this study proposes a multistage imputation framework based on deep learning with adaptability for missing value imputation. The model presents a mixture measurement index of low- and higher-order statistics for data distribution and a new perspective on data imputation performance metrics, which is more adaptive and effective than the traditional mean squared error. A multistage imputation strategy and dynamic data length are introduced into the imputation process for data periods. Experimental results on different types of sensor data show that the multistage imputation strategy and the mixture index are superior and that the effect of missing value imputation has been improved to some extent, particularly for the large segment imputation problem. The codes and experimental results have been uploaded to GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源