论文标题
飞镖之后:使用动力学影响器的第一个全面测试来告知未来的行星防御任务
After DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense mission
论文作者
论文摘要
NASA的双小行星重定向测试(DART)是小行星偏转技术的第一个全尺度测试。高速动力学影响和基于地球的观察结果,再加上Liciacube和后来的HERA任务,将导致测量动量转移效率准确至〜10%,并表征Didymos二进制系统。但是飞镖是一个实验。这些结果如何在涉及不同小行星的未来行星防御必要性中使用?我们检查了Dimorphos对动力学影响的反应的哪些方面将受到DART结果的限制;这些约束将如何帮助完善对小行星材料的物理特性以及影响模拟的预测能力的知识;在偏转工作之前,可以获取有关潜在地球影响器的哪些信息;以及如何通过这种理解来告知挠度任务的设计。我们概括了增强动量因子$β$,表明特定方向特异性的$β$将由DART结果直接确定,并且相关方向特异性的$β$是动力学影响任务的优点。 DART $β$确定限制了射流动量矢量,通过流体动力模拟,它限制了Dimorphos近表面的物理特性。在假设的行星防御紧急情况下,将这些约束推向新发现的小行星将需要基于地球的观察结果,并受益于现场侦察。我们根据不同级别的侦察水平来展示动量转移的代表性预测,并讨论战略目标,以优化偏转并降低适得其反的偏转风险在错误的方向上。
NASA's Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ~10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos's response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor $β$, showing that a particular direction-specific $β$ will be directly determined by the DART results, and that a related direction-specific $β$ is a figure of merit for a kinetic impact mission. The DART $β$ determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos's near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in-situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction.