论文标题

蒙特卡洛梯度在优化方面受辐射传输方程的约束

Monte Carlo Gradient in Optimization Constrained by Radiative Transport Equation

论文作者

Li, Qin, Wang, Li, Yang, Yunan

论文摘要

蒙特卡洛(MC)求解器是否可以直接用于基于梯度的方法来解决PDE受限的优化问题?在这些问题中,通常将损耗函数的梯度作为两个PDE解决方案的产物表示,一个用于正方程,另一个用于伴随。当使用MC求解器时,数值解决方案是狄拉克度量。因此,一个人立即面临解释两种措施的繁殖的困难。这表明MC求解器自然与PDE约束下的基于梯度的优化不相容。在本文中,我们研究了克服困难的两种不同的策略。一种是采用离散的技术,并在代数系统上进行完整的优化,以避免使用狄拉克措施。第二个策略保留在优化的框架内。我们提出了一个相关的模拟,其中我们没有将MC求解器分别用于前进和伴随问题,而是回收了伴随求解器中正向模拟中的样品。这将伴随解作为测试功能,因此可以进行严格的合并分析。调查是通过辐射转移方程的镜头提出的,无论是在光学成像或最佳控制框架中的反向设置中。我们详细介绍算法开发,收敛分析和复杂性成本。还提供了数值证据以证明主张。

Can Monte Carlo (MC) solvers be directly used in gradient-based methods for PDE-constrained optimization problems? In these problems, a gradient of the loss function is typically presented as a product of two PDE solutions, one for the forward equation and the other for the adjoint. When MC solvers are used, the numerical solutions are Dirac measures. As such, one immediately faces the difficulty in explaining the multiplication of two measures. This suggests that MC solvers are naturally incompatible with gradient-based optimization under PDE constraints. In this paper, we study two different strategies to overcome the difficulty. One is to adopt the Discrete-Then-Optimize technique and conduct the full optimization on the algebraic system, avoiding the Dirac measures. The second strategy stays within the Optimize-Then-Discretize framework. We propose a correlated simulation where, instead of using MC solvers separately for both forward and adjoint problems, we recycle the samples in the forward simulation in the adjoint solver. This frames the adjoint solution as a test function, and hence allows a rigorous convergence analysis. The investigation is presented through the lens of the radiative transfer equation, either in the inverse setting from optical imaging or in the optimal control framework. We detail the algorithm development, convergence analysis, and complexity cost. Numerical evidence is also presented to demonstrate the claims.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源