论文标题

涉及超立方体网络的SM-λ属性的边缘耐受耐受性

Edge-fault-tolerance about the SM-λ property of hypercube-like networks

论文作者

Li, Dong Liu. Pingshan, Zhang, Bicheng

论文摘要

网络的边缘耐受性对网络的设计和维护具有重要意义。对于任何连接的图形$ g $的顶点$ u $和$ v $,如果它们是由$ \ min \ {°_g(u)连接的,°_g(v)\} $ edge-dise偶口路径,那么$ g $ nat,则$ g $是强的menger enger enger gended connected(SM-$ pectect)。 有条件的边缘兑换率约为$ g $的sm-$λ$属性,书面$sm_λ^r(g)$,是$ m $的最大值,以至于$ g-f $仍然是任何边缘子集$ f $ a $ | f | f | f | f | f | f | f | f | \ leq m $和$Δ(g g-g-f $ geq r $)$ $ $ $ us $ us $ g f a $ g f a g f | 以前,$SM_λ^r(g)$的大多数确切值是针对$ r \ leq 2 $的一些知名网络,而在某些知名网络上的一些下限为$ r \ geq 3 $。在本文中,我们首先确定一般$ r $的$sm_λ^r(g)$的确切价值(简短的hl-networks(包括超橡胶,扭曲的立方体,交叉的立方体等),即一般$ r $,即$sm_λ^r(g_n)= 2^r(n-r(n-r)-n $ ge_n $ g_n $ ge_n $ ge_n $ nl $ g_n $, $ 1 \ leq r \ leq n-2 $。

The edge-fault-tolerance of networks is of great significance to the design and maintenance of networks. For any pair of vertices $u$ and $v$ of the connected graph $G$, if they are connected by $\min \{ °_G(u),°_G(v)\}$ edge-disjoint paths, then $G$ is strong Menger edge connected (SM-$λ$ for short). The conditional edge-fault-tolerance about the SM-$ λ$ property of $G$, written $sm_λ^r(G)$, is the maximum value of $m$ such that $G-F$ is still SM-$λ$ for any edge subset $F$ with $|F|\leq m$ and $δ(G-F)\geq r$, where $δ(G-F)$ is the minimum degree of $G-F$. Previously, most of the exact value for $sm_λ^r(G)$ is aimed at some well-known networks when $r\leq 2$, and a few of the lower bounds on some well-known networks for $r\geq 3$. In this paper, we firstly determine the exact value of $sm_λ^r(G)$ on class of hypercube-like networks (HL-networks for short, including hypercubes, twisted cubes, crossed cubes etc.) for a general $r$, that is, $sm_λ^r(G_n)=2^r(n-r)-n$ for every $G_n\in HL_n$, where $n\geq 3$ and $1\leq r \leq n-2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源