论文标题
粗糙进化方程的不稳定流形
Unstable manifolds for rough evolution equations
论文作者
论文摘要
在本文中,我们考虑由有限维$γ$-Hölder粗糙路径驱动的一类进化方程式,其中$γ\ in(1/3,1/2] $。我们证明,我们证明了在不可思议的空间中的粗糙进化方程式(REES)的全球全球解决方案(REES)在一个可觉得的空间中,该方程也可以在局部均可产生一定的动态系统。我们在本地的情况下,我们既适用又有一定的效果。同意,我们既适合又有一定的效果。离散的Lyapunov-Perron方法。
In this paper, we consider a class of evolution equations driven by finite-dimensional $γ$-Hölder rough paths, where $γ\in(1/3,1/2]$. We prove the global-in-time solutions of rough evolution equations(REEs) in a sutiable space, also obtain that the solutions generate random dynamical systems. Meanwhile, we derive the existence of local unstable manifolds for such equations by a properly discretized Lyapunov-Perron method.