论文标题

深度卷积神经网络和运动意图预测的转移学习

Deep Convolutional Neural Network and Transfer Learning for Locomotion Intent Prediction

论文作者

Le, Duong, Cheng, Shihao, Gregg, Robert D., Ghaffari, Maani

论文摘要

在不同的运动模式之间切换(例如,楼梯上升/下降,坡道上升/下降)时,有动力的假肢腿必须预测用户的意图。许多数据驱动的分类技术已经证明了预测用户意图的有希望的结果,但是这些意图预测模型对新主题的表现仍然不可取。在其他域(例如,图像分类)中,通过从大型数据集中使用先前学习的功能(即预训练的模型),然后将此学模型转移到可用的新任务中,可以提高转移学习的精度。在本文中,我们开发了一个深层卷积神经网络,该网络具有基于人类运动数据集的受主体内(受试者)和受试者间(主体独立)验证。然后,我们使用剩下的主题中的一小部分(10%)将传递学习用于主题独立的模型。我们比较了这三个模型的性能。我们的结果表明,转移学习(TL)模型的表现优于主题独立(IND)模型,并且与受试者依赖性(DEP)模型(DEP错误:0.74 $ \ pm $ 0.002%,IND错误:11.59 $ \ pm $ 0.076%,TL错误:3.57 $ \ pm $ 0.02%,与10%数据)相当。此外,正如预期的那样,随着剩余主题的更多数据的可用性,转移学习精度会提高。我们还通过各种传感器配置评估了意图预测系统的性能,这些传感器配置可能在假肢应用程序中可用。我们的结果表明,假体的大腿IMU足以预测实践中的运动意图。

Powered prosthetic legs must anticipate the user's intent when switching between different locomotion modes (e.g., level walking, stair ascent/descent, ramp ascent/descent). Numerous data-driven classification techniques have demonstrated promising results for predicting user intent, but the performance of these intent prediction models on novel subjects remains undesirable. In other domains (e.g., image classification), transfer learning has improved classification accuracy by using previously learned features from a large dataset (i.e., pre-trained models) and then transferring this learned model to a new task where a smaller dataset is available. In this paper, we develop a deep convolutional neural network with intra-subject (subject-dependent) and inter-subject (subject-independent) validations based on a human locomotion dataset. We then apply transfer learning for the subject-independent model using a small portion (10%) of the data from the left-out subject. We compare the performance of these three models. Our results indicate that the transfer learning (TL) model outperforms the subject-independent (IND) model and is comparable to the subject-dependent (DEP) model (DEP Error: 0.74 $\pm$ 0.002%, IND Error: 11.59 $\pm$ 0.076%, TL Error: 3.57 $\pm$ 0.02% with 10% data). Moreover, as expected, transfer learning accuracy increases with the availability of more data from the left-out subject. We also evaluate the performance of the intent prediction system in various sensor configurations that may be available in a prosthetic leg application. Our results suggest that a thigh IMU on the the prosthesis is sufficient to predict locomotion intent in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源