论文标题

拆分图设计中的重新授权和协变量调整

Rerandomization and covariate adjustment in split-plot designs

论文作者

Shi, Wenqi, Zhao, Anqi, Liu, Hanzhong

论文摘要

拆分图设计来自具有实验单元(也称为子图)的农业科学,嵌套在称为整个地块的组中。它通过在整个图级别的群集随机化来分配整个图干预措施,并通过子图级别的分层随机分配子图干预。随机机制可以在整图和子图水平上平均平均协方差平衡,并确保Horvitz-Thompson和Hajek估计器对平均治疗效应的一致推断。然而,协变量不平衡通常发生在有限样本中,随后推断出可能的巨大变异性和条件偏见。恢复性化被广泛用于随机实验的设计阶段,以改善协方差平衡。然而,现有的有关重新统治化的文献关注的是通过在单位或组级别分配的治疗方法的设计,但并非两者都在拆分图设计中的重读理论,这是一个开放的问题。为了填补空白,我们提出了两种策略,以基于Mahalanobis距离进行拆分图设计进行重新授课,并建立相应的基于设计的理论。我们表明,重读可以提高Horvitz-Thompson和Hajek估计器的渐近效率。此外,我们在分析阶段提出了两种协变量调整方法,当与重新汇聚结合使用时,可以进一步提高渐近效率。通过数值研究证明了所提出方法的有效性和提高的效率。

The split-plot design arises from agricultural sciences with experimental units, also known as subplots, nested within groups known as whole plots. It assigns the whole-plot intervention by a cluster randomization at the whole-plot level and assigns the subplot intervention by a stratified randomization at the subplot level. The randomization mechanism guarantees covariate balance on average at both the whole-plot and subplot levels, and ensures consistent inference of the average treatment effects by the Horvitz--Thompson and Hajek estimators. However, covariate imbalance often occurs in finite samples and subjects subsequent inference to possibly large variability and conditional bias. Rerandomization is widely used in the design stage of randomized experiments to improve covariate balance. The existing literature on rerandomization nevertheless focuses on designs with treatments assigned at either the unit or the group level, but not both, leaving the corresponding theory for rerandomization in split-plot designs an open problem. To fill the gap, we propose two strategies for conducting rerandomization in split-plot designs based on the Mahalanobis distance and establish the corresponding design-based theory. We show that rerandomization can improve the asymptotic efficiency of the Horvitz--Thompson and Hajek estimators. Moreover, we propose two covariate adjustment methods in the analysis stage, which can further improve the asymptotic efficiency when combined with rerandomization. The validity and improved efficiency of the proposed methods are demonstrated through numerical studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源