论文标题
弹性春季网络中的代表性体积元素近似
Representative volume element approximations in elastoplastic spring networks
论文作者
论文摘要
我们研究了由具有随机材料特性的弹性弹簧组成的网络的小型晶格模型的大规模行为。我们将模型作为进化速率独立系统(ERI)提出。在较早的工作中,我们得出了一个均质的连续模型,该模型具有线性化的弹性性,因为晶格参数趋向于零。在本文中,我们引入了均质系统的周期性代表性体积元素近似(RVE)。作为主要结果,我们证明了RVE近似值的收敛性,因为RVE的大小倾向于无穷大。我们还表明,可以在广义的Prandt-ishlinskii操作员的帮助下描述有效系统的滞后应力 - 应变关系,我们证明了该操作员的定期RVE近似值的收敛性。我们将RVE近似值与速率无关系统的数值方案相结合,并获得计算方案,我们在特定情况下使用该方案在特定情况下使用该方案来研究原始网络由二维晶格模型给出时。我们模拟了系统对循环和单轴,单调载荷的响应,并在数值上研究了周期性RVE近似的收敛速率。特别是,我们的模拟表明,在线性弹性的静态情况下,RVE误差的速率与RVE误差相同。
We study the large-scale behavior of a small-strain lattice model for a network composed of elastoplastic springs with random material properties. We formulate the model as an evolutionary rate independent system (ERIS). In an earlier work we derived a homogenized continuum model, which has the form of linearized elastoplasticity, as evolutionary $Γ$-limit as the lattice parameter tends to zero. In the present paper we introduce a periodic representative volume element approximation (RVE) for the homogenized system. As a main result we prove convergence of the RVE approximation as the size of the RVE tends to infinity. We also show that the hysteretic stress-strain relation of the effective system can be described with help of a generalized Prandt-Ishlinskii operator, and we prove convergence of a periodic RVE approximation for that operator. We combine the RVE approximation with a numerical scheme for rate-independent systems and obtain a computational scheme that we use to numerically investigate the homogenized system in the specific case when the original network is given by a two-dimensional lattice model. We simulate the response of the system to cyclic and uniaxial, monotonic loading, and numerically investigate the convergence rate of the periodic RVE approximation. In particular, our simulations show that the RVE error decays with the same rate as the RVE error in the static case of linear elasticity.