论文标题
Mechpronet:金属添加剂制造中机械性能的机器学习预测
MechProNet: Machine Learning Prediction of Mechanical Properties in Metal Additive Manufacturing
论文作者
论文摘要
预测金属添加剂制造(MAM)中的机械性能对于确保印刷零件的性能和可靠性以及对特定应用的适用性至关重要。但是,进行实验以估计MAM过程中的机械性能可能是费力且昂贵的,并且通常仅限于特定的材料和过程。机器学习(ML)方法为基于处理参数和材料属性预测机械性能提供了一种更灵活,更具成本效益的方法。在这项研究中,我们介绍了一个综合框架,用于基准ML模型来预测机械性能。我们从90多个MAM文章和来自各种来源的数据表中编辑了广泛的实验数据集,其中包括140个不同的MAM数据表。该数据集包括有关MAM处理条件,机器,材料以及由此产生的机械性能的信息,例如屈服强度,最终拉伸强度,弹性模量,伸长,硬度和表面粗糙度。我们的框架结合了特定于MAM,可调节的ML模型和量身定制的评估指标的物理意识的特征,以构建用于预测机械性能的全面学习框架。此外,我们探讨了可解释的AI方法,特别是塑造分析,以阐明和解释机械性能的ML模型的预测值。此外,开发了数据驱动的显式模型,以根据处理参数和材料属性估算机械性能,与常规ML模型相比,具有增强的可解释性。
Predicting mechanical properties in metal additive manufacturing (MAM) is essential for ensuring the performance and reliability of printed parts, as well as their suitability for specific applications. However, conducting experiments to estimate mechanical properties in MAM processes can be laborious and expensive, and they are often limited to specific materials and processes. Machine learning (ML) methods offer a more flexible and cost-effective approach to predicting mechanical properties based on processing parameters and material properties. In this study, we introduce a comprehensive framework for benchmarking ML models for predicting mechanical properties. We compiled an extensive experimental dataset from over 90 MAM articles and data sheets from a diverse range of sources, encompassing 140 different MAM data sheets. This dataset includes information on MAM processing conditions, machines, materials, and resulting mechanical properties such as yield strength, ultimate tensile strength, elastic modulus, elongation, hardness, and surface roughness. Our framework incorporates physics-aware featurization specific to MAM, adjustable ML models, and tailored evaluation metrics to construct a comprehensive learning framework for predicting mechanical properties. Additionally, we explore the Explainable AI method, specifically SHAP analysis, to elucidate and interpret the predicted values of ML models for mechanical properties. Furthermore, data-driven explicit models were developed to estimate mechanical properties based on processing parameters and material properties, offering enhanced interpretability compared to conventional ML models.