论文标题

零射门学习的灵活工作分类

Flexible Job Classification with Zero-Shot Learning

论文作者

Lake, Thom

论文摘要

使用分类法来组织信息,需要将对象(文档,图像等)与适当的分类类别进行分类。零射门学习的灵活性质吸引了此任务,因为它允许分类器自然适应分类法修改。这项工作在人力资源领域的现实分类扩展方案下,研究了零击的多标签文档分类。实验表明,在这种情况下,零射击学习可能非常有效。在控制培训数据预算时,与在所有课程中训练的传统多标签分类器相比,零射击分类器相对增加了宏观AP的12%。违反直觉,这些结果表明,在某些情况下,最好是采用零拍技术并花费资源来注释更多的文档,而不是使用一组不完整的类别,而不是将标签预算统一分布在所有类别上,并使用传统的分类技术。其他实验表明,从推荐系统文献中采用众所周知的过滤器/重新排列分解可以显着减轻高性能零摄影分类器的计算负担,从经验上导致计算间接开销的98%减少,只有2%的相对绩效下降。这里提供的证据表明,零射门学习有可能显着提高分类法的灵活性,并突出显示未来研究的方向。

Using a taxonomy to organize information requires classifying objects (documents, images, etc) with appropriate taxonomic classes. The flexible nature of zero-shot learning is appealing for this task because it allows classifiers to naturally adapt to taxonomy modifications. This work studies zero-shot multi-label document classification with fine-tuned language models under realistic taxonomy expansion scenarios in the human resource domain. Experiments show that zero-shot learning can be highly effective in this setting. When controlling for training data budget, zero-shot classifiers achieve a 12% relative increase in macro-AP when compared to a traditional multi-label classifier trained on all classes. Counterintuitively, these results suggest in some settings it would be preferable to adopt zero-shot techniques and spend resources annotating more documents with an incomplete set of classes, rather than spreading the labeling budget uniformly over all classes and using traditional classification techniques. Additional experiments demonstrate that adopting the well-known filter/re-rank decomposition from the recommender systems literature can significantly reduce the computational burden of high-performance zero-shot classifiers, empirically resulting in a 98% reduction in computational overhead for only a 2% relative decrease in performance. The evidence presented here demonstrates that zero-shot learning has the potential to significantly increase the flexibility of taxonomies and highlights directions for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源