论文标题

二次曲线二曲子和二芬太丁五列

Quadratic twists of genus one curves and Diophantine quintuples

论文作者

Kazalicki, Matija

论文摘要

由diophantine $ m $ tuples的理论激励,我们研究了二次曲折的合理点$ h^d:d y^2 =(x^2+6x-18)(-x^2+2x+2)$,其中$ | d | $是prime。如果我们用$ s(x)= \ {d \ in \ mathbb {z}:h^d(\ mathbb {q})\ ne \ emptyset,| d | \ textrm {是prime} \ textrm {and} | d |然后,$然后,通过假设对二次曲折家族中椭圆曲线等级的一些标准构想,我们证明这是$ x \ rightarrow \ rightarrow \ rightarrow \ infty $ $ $ $ $ $ $ $ $ $ \ frac {43} {256} {256} {256}+o(1) \ frac {46} {256}+o(1)。$$

Motivated by the theory of Diophantine $m$-tuples, we study rational points on quadratic twists $H^d:d y^2=(x^2+6x-18)(-x^2+2x+2)$, where $|d|$ is a prime. If we denote by $S(X)=\{ d \in \mathbb{Z}: H^d(\mathbb{Q})\ne \emptyset, |d| \textrm{ is a prime}\textrm{ and } |d| < X\},$ then, by assuming some standard conjectures about the ranks of elliptic curves in the family of quadratic twists, we prove that as $X \rightarrow \infty$ $$\frac{43}{256}+o(1)\le \frac{\#S(X)}{2π(X)}\le \frac{46}{256}+o(1).$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源