论文标题

有效的可逆任意图像重新缩放

Effective Invertible Arbitrary Image Rescaling

论文作者

Pan, Zhihong, Li, Baopu, He, Dongliang, Wu, Wenhao, Ding, Errui

论文摘要

使用具有固定尺度的图像超分辨率(SR)的深度学习技术,已经取得了巨大的成功。为了提高其现实世界的适用性,还提出了许多模型来恢复具有任意尺度因子的SR图像,包括不对称的图像,其中图像沿水平和垂直方向大小为不同的尺度。尽管大多数模型仅针对单向升级任务进行了优化,同时假设针对低分辨率(LR)输入的预定义的缩小内核,但基于可逆神经网络(INN)的最新模型能够通过优化降低降低和降低降低和升级周期,从而显着提高上升的准确性。但是,受创新体系结构的限制,它被限制在固定的整数尺度因素上,并且需要每个量表一个模型。在不增加模型复杂性的情况下,提出了一个简单有效的可逆性重新恢复网络(IARN),以通过在这项工作中仅训练一个模型来实现任意图像重新缩放。使用创新的组件(例如位置感知量表编码和先发制人的渠道拆分),该网络被优化,以将不可变的恢复周期转换为有效的可逆过程。证明它可以在双向任意续订中实现最新的(SOTA)性能,而不会损害LR输出的感知质量。还可以证明,使用相同的网络体系结构在具有不对称尺度的测试上表现良好。

Great successes have been achieved using deep learning techniques for image super-resolution (SR) with fixed scales. To increase its real world applicability, numerous models have also been proposed to restore SR images with arbitrary scale factors, including asymmetric ones where images are resized to different scales along horizontal and vertical directions. Though most models are only optimized for the unidirectional upscaling task while assuming a predefined downscaling kernel for low-resolution (LR) inputs, recent models based on Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly. However, limited by the INN architecture, it is constrained to fixed integer scale factors and requires one model for each scale. Without increasing model complexity, a simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work. Using innovative components like position-aware scale encoding and preemptive channel splitting, the network is optimized to convert the non-invertible rescaling cycle to an effectively invertible process. It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs. It is also demonstrated to perform well on tests with asymmetric scales using the same network architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源