论文标题
Waternerf:水下场景的神经辐射场
WaterNeRF: Neural Radiance Fields for Underwater Scenes
论文作者
论文摘要
水下成像是海洋机器人执行的一项至关重要的任务,用于广泛的应用,包括水产养殖,海洋基础设施检查和环境监测。但是,水柱效应(例如衰减和反向散射)会大大改变捕获的水下图像的颜色和质量。由于水条件的变化和这些影响的范围依赖性,恢复水下图像是一个具有挑战性的问题。这会影响下游感知任务,包括深度估计和3D重建。在本文中,我们推进了神经辐射场(NERFS)的最先进,以实现物理信息密集的深度估计和颜色校正。我们提出的方法Waternerf估计了水下图像形成的基于物理的模型的参数,从而导致混合数据驱动和基于模型的解决方案。在确定了场景结构和辐射场之后,我们可以产生降级和校正的水下图像的新颖观点,以及场景密集的深度。我们在定性和定量的水下数据集上评估了所提出的方法。
Underwater imaging is a critical task performed by marine robots for a wide range of applications including aquaculture, marine infrastructure inspection, and environmental monitoring. However, water column effects, such as attenuation and backscattering, drastically change the color and quality of imagery captured underwater. Due to varying water conditions and range-dependency of these effects, restoring underwater imagery is a challenging problem. This impacts downstream perception tasks including depth estimation and 3D reconstruction. In this paper, we advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction. Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation, leading to a hybrid data-driven and model-based solution. After determining the scene structure and radiance field, we can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene. We evaluate the proposed method qualitatively and quantitatively on a real underwater dataset.