论文标题
非PURE(非)交通分析,几何学和力学,第1部分:差分和积分微积分
Nonpure (Non)Commutative Analysis, Geometry and Mechanics, part 1: differential and integral calculus
论文作者
论文摘要
我们通过装备正式的平滑结构来构建和研究在C*代数状态的空间上的差异和积分。为了实现这一目标,我们首先集中于交换c*代数的非紫色状态,作为非交通案例的指南。特别是,我们证明了在交换性和非交通性的平滑剂量空间上的Stokes定理。
We construct and study differential and integral calculus on the space of states of a C*-algebra by equipping it with a formal smooth structure. To achieve this goal we first concentrate on the space of nonpure states of a commutative C*-algebra as a guideline for the noncommutative case. In particular, we prove Stokes' theorem over the both commutative and noncommutative smooth Wasserstein space.