论文标题
带有变压器的航空视频中的异常检测
Anomaly Detection in Aerial Videos with Transformers
论文作者
论文摘要
无人驾驶汽车(UAV)通过低成本,大型覆盖,实时和高分辨率的数据采集能力,广泛用于检查,搜索和救援操作的目的。在这些过程中产生了大量航空视频,在这些过程中,正常事件通常占压倒性的比例。本地化和提取异常事件非常困难,这些事件包含手动从长视频流中潜在的有价值的信息。因此,我们致力于开发用于解决此问题的异常检测方法。在本文中,我们创建了一个新的数据集,名为Droneanomaly,用于空中视频中的异常检测。该数据集提供了37个培训视频序列和22个测试视频序列,这些视频序列来自7个不同的现实场景,其中包括各种异常事件。有87,488个彩色视频框架(训练51,635,测试35,853),每秒30帧的尺寸为$ 640 \ times 640美元。基于此数据集,我们评估现有方法并为此任务提供基准。此外,我们提出了一种新的基线模型,即变压器(ANDT)的异常检测,该模型将连续的视频帧视为一系列小管,它利用变压器编码器从序列中学习特征表示,并利用解码器来预测下一帧。我们的网络在训练阶段模拟正常性,并确定了具有不可预测的时间动力学的事件是测试阶段的异常。此外,为了全面评估我们提出的方法的性能,我们不仅使用无人机 - 异常数据集,而且使用另一个数据集。我们将使数据集和代码公开可用。可以在https://youtu.be/ancczyryoby上获得演示视频。我们使数据集和代码公开可用。
Unmanned aerial vehicles (UAVs) are widely applied for purposes of inspection, search, and rescue operations by the virtue of low-cost, large-coverage, real-time, and high-resolution data acquisition capacities. Massive volumes of aerial videos are produced in these processes, in which normal events often account for an overwhelming proportion. It is extremely difficult to localize and extract abnormal events containing potentially valuable information from long video streams manually. Therefore, we are dedicated to developing anomaly detection methods to solve this issue. In this paper, we create a new dataset, named DroneAnomaly, for anomaly detection in aerial videos. This dataset provides 37 training video sequences and 22 testing video sequences from 7 different realistic scenes with various anomalous events. There are 87,488 color video frames (51,635 for training and 35,853 for testing) with the size of $640 \times 640$ at 30 frames per second. Based on this dataset, we evaluate existing methods and offer a benchmark for this task. Furthermore, we present a new baseline model, ANomaly Detection with Transformers (ANDT), which treats consecutive video frames as a sequence of tubelets, utilizes a Transformer encoder to learn feature representations from the sequence, and leverages a decoder to predict the next frame. Our network models normality in the training phase and identifies an event with unpredictable temporal dynamics as an anomaly in the test phase. Moreover, To comprehensively evaluate the performance of our proposed method, we use not only our Drone-Anomaly dataset but also another dataset. We will make our dataset and code publicly available. A demo video is available at https://youtu.be/ancczYryOBY. We make our dataset and code publicly available .