论文标题

病理学家的工作流程,用于在组织病理学中分类前列腺

A Pathologist-Informed Workflow for Classification of Prostate Glands in Histopathology

论文作者

Ferrero, Alessandro, Knudsen, Beatrice, Sirohi, Deepika, Whitaker, Ross

论文摘要

病理学家通过检查载玻片上的针头活检的组织来诊断和成绩前列腺癌。癌症的严重程度和转移风险取决于格里森等级,这是基于前列腺癌腺体的组织和形态的分数。为了进行诊断检查,病理学家首先将腺体定位在整个活检核心中,如果检测到癌症,则分配了Gleason等级。尽管严格的诊断标准,这种耗时的过程仍会遇到错误和明显的观察者间变异性。本文提出了一个自动化的工作流程,该工作流程遵循病理学家的\ textit {modus operandi},对整个幻灯片图像(WSI)的多尺度斑块进行了隔离和分类。 (2)分类器网络以高放大倍数将良性与癌症分离; (3)另一个分类器预测低放大倍数的每个癌症等级。总的来说,此过程为前列腺癌分级提供了一种特定于腺体的方法,我们将其与其他基于机器学习的分级方法进行比较。

Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides. The cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands. For diagnostic work-up, pathologists first locate glands in the whole biopsy core, and -- if they detect cancer -- they assign a Gleason grade. This time-consuming process is subject to errors and significant inter-observer variability, despite strict diagnostic criteria. This paper proposes an automated workflow that follows pathologists' \textit{modus operandi}, isolating and classifying multi-scale patches of individual glands in whole slide images (WSI) of biopsy tissues using distinct steps: (1) two fully convolutional networks segment epithelium versus stroma and gland boundaries, respectively; (2) a classifier network separates benign from cancer glands at high magnification; and (3) an additional classifier predicts the grade of each cancer gland at low magnification. Altogether, this process provides a gland-specific approach for prostate cancer grading that we compare against other machine-learning-based grading methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源