论文标题
通过距离函数和Lorentz空间来表征零迹线的功能
Characterization of functions with zero traces via the distance function and Lorentz spaces
论文作者
论文摘要
考虑一个常规域$ω\ subset \ mathbb {r}^n $,让$ d(x)= \ operatatorName {dist}(x,x,\partialΩ)$。表示$ l^{1,\ infty} _a(ω)$具有绝对连续的icoasinorms的$ l^{1,\ infty}(ω)$的功能空间。该集基本上小于$ l^{1,\ infty}(ω)$,但与此同时,基本上大于所有$ l^{1,q}(ω)$,$ q \ in [1,\ infty)$的联合。 1980年代末的一个经典结果指出,(1,\ infty)$和$ m \ in \ mathbb {n} $,$ u $,$ u $属于sobolev space $ w^{m,p} _0 _0(ω)$,并且仅当$ u/d^m \ in l^p(in l^p(p(p)) l^p(ω)$。在随之而来的几十年中,几位作者花了大量精力来放松表征条件。最近,事实证明,$ u \ in w^{m,p} _0(ω)$,仅当$ u/d^m \ in l^1(ω)$和$ \ weft | \ nabla^m u \ r \ right | \ in l^p(ω)$中。在本文中,我们表明,对于$ n \ geq1 $和$ p \ in(1,\ infty)$,我们在w^{1,p} _0(ω)$中具有$ u \,并且仅当$ u/d \ in l^{1,\ infty} _a(Ω)$ u/d \ in l^{1,\ undy} _a(ω)$ wept | weft | wept | wept | \ w |此外,我们提出了一个反例,该例子表明,在放松条件后,$ u/d \ in l^{1,\ infty} _a(ω)$ to $ u/d \ in l^{1,\ infty}(ω)$等价不再持有。
Consider a regular domain $Ω\subset \mathbb{R}^N$ and let $d(x)=\operatorname{dist}(x,\partialΩ)$. Denote $L^{1,\infty}_a(Ω)$ the space of functions from $L^{1,\infty}(Ω)$ having absolutely continuous quasinorms. This set is essentially smaller than $L^{1,\infty}(Ω)$ but, at the same time, essentially larger than a union of all $L^{1,q}(Ω)$, $q\in[1,\infty)$. A classical result of late 1980's states that for $p\in (1,\infty)$ and $m \in \mathbb{N}$, $u$ belongs to the Sobolev space $W^{m,p}_0(Ω)$ if and only if $u/d^m\in L^p(Ω)$ and $\left|\nabla^m u\right|\in L^p(Ω)$. During the consequent decades, several authors have spent considerable effort in order to relax the characterizing condition. Recently, it was proved that $u\in W^{m,p}_0(Ω)$ if and only if $u/d^m\in L^1(Ω)$ and $\left|\nabla^m u\right|\in L^p(Ω)$. In this paper we show that for $N\geq1$ and $p\in(1,\infty)$ we have $u\in W^{1,p}_0(Ω)$ if and only if $u/d\in L^{1,\infty}_a(Ω)$ and $\left|\nabla u\right|\in L^p(Ω)$. Moreover, we present a counterexample which demonstrates that after relaxing the condition $u/d\in L^{1,\infty}_a(Ω)$ to $u/d\in L^{1,\infty}(Ω)$ the equivalence no longer holds.