论文标题
度量几乎是周期性:Levitan和Bebutov概念
Metrical almost periodicity: Levitan and Bebutov concepts
论文作者
论文摘要
在本文中,我们分析了功能的Levitan和Bebutov度量近似值$ f:λ\ times x \ rightarrow y $ y $ $ $ $ $ y $ y $ y $由三角多项式和$ρ$ - periodic类型函数,其中$ \ emberySet \ emberyset \ emberyset \ neque / neqλ\neqλ\ seeteq { $ρ$是$ y $的一般二进制关系。我们还分析了一般度量和多维bebutov中的各种多维Levitan几乎是周期性的函数,在一般度量标准中均匀地复发。我们将理论结果的几种应用用于抽象的Volterra Integro-差异方程和部分微分方程。
In this paper, we analyze Levitan and Bebutov metrical approximations of functions $F :Λ\times X \rightarrow Y$ by trigonometric polynomials and $ρ$-periodic type functions, where $\emptyset \neq Λ\subseteq {\mathbb R}^{n}$, $X$ and $Y$ are complex Banach spaces, and $ρ$ is a general binary relation on $Y$. We also analyze various classes of multi-dimensional Levitan almost periodic functions in general metric and multi-dimensional Bebutov uniformly recurrent functions in general metric. We provide several applications of our theoretical results to the abstract Volterra integro-differential equations and the partial differential equations.