论文标题

通过离散连续(迪斯科)卷积的可扩展性和均值球形CNN

Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions

论文作者

Ocampo, Jeremy, Price, Matthew A., McEwen, Jason D.

论文摘要

现有的球形卷积神经网络(CNN)框架在计算方面既可以扩展又是旋转的框架。连续的方法捕获旋转肩variance骨,但通常在计算上是过时的。离散的方法提供了更有利的计算性能,但付出了损失。我们开发了一个混合离散(迪斯科)组卷积,该卷积同时均具有等效性,并且在计算上可扩展到高分辨率。虽然我们的框架可以应用于任何紧凑的组,但我们专门针对球体。我们的迪斯科球形卷积展示了$ \ text {so}(3)$旋转模棱两可,其中$ \ text {so}(n)$是代表$ n $ dimensions中旋转的特殊正交组。当将卷积的旋转限制为商空间$ \ text {so}(so}(3)/\ text {so}(2)$以进行进一步的计算增强功能时,我们恢复了一种渐近$ \ text {so}(so}(3)$ rotational esorational equivianciance的形式。通过稀疏的张量实现,我们可以在球体上的像素数量进行线性缩放,以供计算成本和内存使用情况。对于4K球形图像,与最有效的替代替代品量相比,我们意识到节省了$ 10^9 $的计算成本和$ 10^4 $的内存使用情况。我们将迪斯科球形CNN框架应用于球体上的许多基准密集预测问题,例如语义分割和深度估计,在所有这些问题上,我们都达到了最先进的性能。

No existing spherical convolutional neural network (CNN) framework is both computationally scalable and rotationally equivariant. Continuous approaches capture rotational equivariance but are often prohibitively computationally demanding. Discrete approaches offer more favorable computational performance but at the cost of equivariance. We develop a hybrid discrete-continuous (DISCO) group convolution that is simultaneously equivariant and computationally scalable to high-resolution. While our framework can be applied to any compact group, we specialize to the sphere. Our DISCO spherical convolutions exhibit $\text{SO}(3)$ rotational equivariance, where $\text{SO}(n)$ is the special orthogonal group representing rotations in $n$-dimensions. When restricting rotations of the convolution to the quotient space $\text{SO}(3)/\text{SO}(2)$ for further computational enhancements, we recover a form of asymptotic $\text{SO}(3)$ rotational equivariance. Through a sparse tensor implementation we achieve linear scaling in number of pixels on the sphere for both computational cost and memory usage. For 4k spherical images we realize a saving of $10^9$ in computational cost and $10^4$ in memory usage when compared to the most efficient alternative equivariant spherical convolution. We apply the DISCO spherical CNN framework to a number of benchmark dense-prediction problems on the sphere, such as semantic segmentation and depth estimation, on all of which we achieve the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源