论文标题
基于深度学习的SFERICS识别Dead Band中的AMT数据处理
Deep learning based sferics recognition for AMT data processing in the dead band
论文作者
论文摘要
在音频磁电盘(AMT)响起数据处理中,在某些时候缺少sferic信号通常会导致AMT死谱带中缺乏能量,这可能会导致不可靠的电阻率估计。我们提出了一个深卷积神经网络(CNN),以在长时间范围内自动识别从冗余记录的数据中识别出Sferic信号,并使用它们来补偿电阻率估计。我们通过使用带有不同信号的现场时间序列数据对从中国大陆不同地区获得的噪声评估进行训练。为了解决由于SFERIC标签数量有限而解决潜在的过度拟合问题,我们提出了一种训练策略,该培训在优化CNN模型参数的同时,随机生成训练样本(随机数据增强)。我们停止培训过程和数据生成,直到培训损失收敛为止。此外,我们使用加权二进制跨透明术损失函数来解决样本不平衡问题,以更好地优化网络,使用多个合理的指标来评估网络性能,并进行消融实验,以最佳选择模型超级标准。广泛的现场数据应用程序表明,我们训练的CNN可以稳健地识别来自嘈杂时间序列的Sferic信号,以进行后续的阻抗估计。随后的处理结果表明,我们的方法可以显着改善S/N,并有效地解决了死频段缺乏能量的问题。与传统的处理方法相比,我们的方法可以产生更平稳且更合理的明显电阻率曲线和去极化相张量,纠正高频电阻率突然下降的估计误差和相位反转的异常行为,并最终更好地恢复了真实的浅层地下电阻率结构。
In the audio magnetotellurics (AMT) sounding data processing, the absence of sferic signals in some time ranges typically results in a lack of energy in the AMT dead band, which may cause unreliable resistivity estimate. We propose a deep convolutional neural network (CNN) to automatically recognize sferic signals from redundantly recorded data in a long time range and use them to compensate for the resistivity estimation. We train the CNN by using field time series data with different signal to noise rations that were acquired from different regions in mainland China. To solve the potential overfitting problem due to the limited number of sferic labels, we propose a training strategy that randomly generates training samples (with random data augmentations) while optimizing the CNN model parameters. We stop the training process and data generation until the training loss converges. In addition, we use a weighted binary cross-entropy loss function to solve the sample imbalance problem to better optimize the network, use multiple reasonable metrics to evaluate network performance, and carry out ablation experiments to optimally choose the model hyperparameters. Extensive field data applications show that our trained CNN can robustly recognize sferic signals from noisy time series for subsequent impedance estimation. The subsequent processing results show that our method can significantly improve S/N and effectively solve the problem of lack of energy in dead band. Compared to the traditional processing method without sferic compensation, our method can generate a smoother and more reasonable apparent resistivity-phase curves and depolarized phase tensor, correct the estimation error of sudden drop of high-frequency apparent resistivity and abnormal behavior of phase reversal, and finally better restore the real shallow subsurface resistivity structure.