论文标题

FedVeca:联合矢量对非IID数据的平均数据进行适应性双向全球目标

FedVeca: Federated Vectorized Averaging on Non-IID Data with Adaptive Bi-directional Global Objective

论文作者

Luo, Ping, Cheng, Jieren, Liu, Zhenhao, Xiong, N., Wu, Jie

论文摘要

联合学习(FL)是一个分布式的机器学习框架,可减轻数据孤岛,在该孤岛中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对受过训练的模型产生了负面影响,并且具有不同本地更新数量的客户可能会在每个通信回合中与本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法,以解决非IID数据上的上述问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长是局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以适应性地调整使目标接近最佳的步骤。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。

Federated Learning (FL) is a distributed machine learning framework to alleviate the data silos, where decentralized clients collaboratively learn a global model without sharing their private data. However, the clients' Non-Independent and Identically Distributed (Non-IID) data negatively affect the trained model, and clients with different numbers of local updates may cause significant gaps to the local gradients in each communication round. In this paper, we propose a Federated Vectorized Averaging (FedVeca) method to address the above problem on Non-IID data. Specifically, we set a novel objective for the global model which is related to the local gradients. The local gradient is defined as a bi-directional vector with step size and direction, where the step size is the number of local updates and the direction is divided into positive and negative according to our definition. In FedVeca, the direction is influenced by the step size, thus we average the bi-directional vectors to reduce the effect of different step sizes. Then, we theoretically analyze the relationship between the step sizes and the global objective, and obtain upper bounds on the step sizes per communication round. Based on the upper bounds, we design an algorithm for the server and the client to adaptively adjusts the step sizes that make the objective close to the optimum. Finally, we conduct experiments on different datasets, models and scenarios by building a prototype system, and the experimental results demonstrate the effectiveness and efficiency of the FedVeca method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源