论文标题
部分可观测时空混沌系统的无模型预测
Bounds for moments of symmetric square $L$-functions
论文作者
论文摘要
我们研究了$ 2K $ - $三的时刻,位于对称广场$ l $ functions的中央点,附属于Holomorphic Hecke cusp的第一级形式,重量$κ$。我们为无条件的所有实际$ k \ geq 1/2 $建立了尖锐的下限。假设普遍的Riemann假设的真相,我们还获得了所有实际$ 0 \ leq k <1/2 $的尖锐下限,并且所有真实$ k \ geq 0 $的上限和尖锐的上限。
We study the $2k$-th moment at the central point of the family of symmetric square $L$-functions attached to holomorphic Hecke cusp forms of level one, weight $κ$. We establish sharp lower bounds for all real $k \geq 1/2$ unconditionally. Assuming the truth of the generalized Riemann hypothesis, we also obtain sharp lower bounds for all real $0 \leq k < 1/2$ and sharp upper bounds for all real $k \geq 0$.