论文标题
分层混音多标签分类,跨学科研究建议
Hierarchical MixUp Multi-label Classification with Imbalanced Interdisciplinary Research Proposals
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Funding agencies are largely relied on a topic matching between domain experts and research proposals to assign proposal reviewers. As proposals are increasingly interdisciplinary, it is challenging to profile the interdisciplinary nature of a proposal, and, thereafter, find expert reviewers with an appropriate set of expertise. An essential step in solving this challenge is to accurately model and classify the interdisciplinary labels of a proposal. Existing methodological and application-related literature, such as textual classification and proposal classification, are insufficient in jointly addressing the three key unique issues introduced by interdisciplinary proposal data: 1) the hierarchical structure of discipline labels of a proposal from coarse-grain to fine-grain, e.g., from information science to AI to fundamentals of AI. 2) the heterogeneous semantics of various main textual parts that play different roles in a proposal; 3) the number of proposals is imbalanced between non-interdisciplinary and interdisciplinary research. Can we simultaneously address the three issues in understanding the proposal's interdisciplinary nature? In response to this question, we propose a hierarchical mixup multiple-label classification framework, which we called H-MixUp. H-MixUp leverages a transformer-based semantic information extractor and a GCN-based interdisciplinary knowledge extractor for the first and second issues. H-MixUp develops a fused training method of Wold-level MixUp, Word-level CutMix, Manifold MixUp, and Document-level MixUp to address the third issue.