论文标题
部分可观测时空混沌系统的无模型预测
DPNet: Dual-Path Network for Real-time Object Detection with Lightweight Attention
论文作者
论文摘要
压缩高准确性卷积神经网络(CNN)的最新进展已经见证了实时对象检测的显着进步。为了加速检测速度,轻质检测器总是使用单路主链几乎没有卷积层。但是,单路径架构涉及连续的合并和下采样操作,始终导致粗略和不准确的特征图,这些图形不利于找到对象。另一方面,由于网络容量有限,最近的轻质网络在表示大规模的视觉数据方面通常很弱。为了解决这些问题,本文提出了一个名为DPNET的双路径网络,并采用了实时对象检测的轻巧注意方案。双路径体系结构使我们能够与提取物相对于高级语义特征和低级对象详细信息。尽管DPNET相对于单路检测器几乎具有重复的形状,但计算成本和模型大小并未显着增加。为了增强表示能力,轻巧的自我相关模块(LSCM)旨在捕获全局交互,只有很少的计算开销和网络参数。在颈部,LSCM扩展到轻质互相关模块(LCCM),从而捕获相邻尺度特征之间的相互依赖性。我们已经对Coco和Pascal VOC 2007数据集进行了详尽的实验。实验结果表明,DPNET在检测准确性和实施效率之间实现了最新的权衡。具体而言,DPNET在MS COCO测试-DEV上可实现30.5%的AP和Pascal VOC 2007测试集的81.5%MAP,MWITH将近250万型号的型号,1.04 GFLOPS,1.04 GFLOPS和164 FPS和196 fps,320 x 320输入图像的320 x 320输入图像。
The recent advances of compressing high-accuracy convolution neural networks (CNNs) have witnessed remarkable progress for real-time object detection. To accelerate detection speed, lightweight detectors always have few convolution layers using single-path backbone. Single-path architecture, however, involves continuous pooling and downsampling operations, always resulting in coarse and inaccurate feature maps that are disadvantageous to locate objects. On the other hand, due to limited network capacity, recent lightweight networks are often weak in representing large scale visual data. To address these problems, this paper presents a dual-path network, named DPNet, with a lightweight attention scheme for real-time object detection. The dual-path architecture enables us to parallelly extract high-level semantic features and low-level object details. Although DPNet has nearly duplicated shape with respect to single-path detectors, the computational costs and model size are not significantly increased. To enhance representation capability, a lightweight self-correlation module (LSCM) is designed to capture global interactions, with only few computational overheads and network parameters. In neck, LSCM is extended into a lightweight crosscorrelation module (LCCM), capturing mutual dependencies among neighboring scale features. We have conducted exhaustive experiments on MS COCO and Pascal VOC 2007 datasets. The experimental results demonstrate that DPNet achieves state-of the-art trade-off between detection accuracy and implementation efficiency. Specifically, DPNet achieves 30.5% AP on MS COCO test-dev and 81.5% mAP on Pascal VOC 2007 test set, together mwith nearly 2.5M model size, 1.04 GFLOPs, and 164 FPS and 196 FPS for 320 x 320 input images of two datasets.