论文标题

部分可观测时空混沌系统的无模型预测

One-off and Repeating Fast Radio Bursts: A Statistical Analysis

论文作者

Chen, Hao-Yan, Gu, Wei-Min, Sun, Mouyuan, Yi, Tuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

According to the number of detected bursts, fast radio bursts (FRBs) can be classified into two categories, i.e., one-off FRBs and repeating ones. We make a statistical comparison of these two categories based on the first FRB catalog of the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project. Using the Anderson-Darling, Kolmogrov-Smirnov, and Energy statistic tests, we find significant statistical differences ($p$-value $<$ 0.001) of the burst properties between the one-off FRBs and the repeating ones. More specifically, after controlling for distance, we find that the peak luminosities of one-off FRBs are, on average, higher than the repeating ones; the pulse temporal widths of repeating FRBs are, on average, longer than the one-off ones. The differences indicate that these two categories could have distinct physical origins. Moreover, we discuss the sub-populations of FRBs and provide statistical evidence to support the existence of sub-populations in one-off FRBs and in repeating ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源