论文标题
正交分解和扭曲的异构体II
Orthogonal decompositions and twisted isometries II
论文作者
论文摘要
我们对接受von neumann-wold分解的等法(不一定是通勤)等法分类进行了分类。我们介绍了异态分组的扭曲异构体的概念,并证明了此类元素的正交分解。以前的分类部分受到三十多年前的结果的启发。后者的结果概括了Popovici的正交分解,用于对扭曲异构体的一般造型的一般分组,其中还包括通勤异构体的案例。我们的结果统一了文献中所有已知的正交分解相关的结果。
We classify tuples of (not necessarily commuting) isometries that admit von Neumann-Wold decomposition. We introduce the notion of twisted isometries for tuples of isometries and prove the existence of orthogonal decomposition for such tuples. The former classification is partially inspired by a result that was observed more than three decades ago by Gaspar and Suciu. And the latter result generalizes Popovici's orthogonal decompositions for pairs of commuting isometries to general tuples of twisted isometries which also includes the case of tuples of commuting isometries. Our results unify all the known orthogonal decomposition related results in the literature.