论文标题
展开的压缩盲目卷积
Unrolled Compressed Blind-Deconvolution
论文作者
论文摘要
在许多工程应用中,例如雷达/声纳/超声成像等许多工程应用中,稀疏多通道盲卷(S-MBD)的问题经常出现。为了降低其计算和实施成本,我们提出了一种压缩方法,该方法可以及时从更少的测量值中进行盲目恢复。所提出的压缩通过过滤器随后进行下采样来测量信号,从而大大降低了实施成本。我们从压缩测量值中得出了稀疏过滤器的可识别性和回收率的理论保证。我们的结果允许设计广泛的压缩过滤器。然后,我们提出了一个由数据驱动的展开的学习框架,以学习压缩过滤器并解决S-MBD问题。编码器是一个经常性的推理网络,该网络将压缩测量值映射到稀疏过滤器的估计值中。我们证明,与基于优化的方法相比,我们展开的学习方法对源形状的选择更为强大,并且具有更好的恢复性能。最后,在数据限制的应用程序(少数图)中,我们强调了与传统深度学习相比,展开学习的卓越概括能力。
The problem of sparse multichannel blind deconvolution (S-MBD) arises frequently in many engineering applications such as radar/sonar/ultrasound imaging. To reduce its computational and implementation cost, we propose a compression method that enables blind recovery from much fewer measurements with respect to the full received signal in time. The proposed compression measures the signal through a filter followed by a subsampling, allowing for a significant reduction in implementation cost. We derive theoretical guarantees for the identifiability and recovery of a sparse filter from compressed measurements. Our results allow for the design of a wide class of compression filters. We, then, propose a data-driven unrolled learning framework to learn the compression filter and solve the S-MBD problem. The encoder is a recurrent inference network that maps compressed measurements into an estimate of sparse filters. We demonstrate that our unrolled learning method is more robust to choices of source shapes and has better recovery performance compared to optimization-based methods. Finally, in data-limited applications (fewshot learning), we highlight the superior generalization capability of unrolled learning compared to conventional deep learning.