论文标题

SU(3)的梯度流量级尺度功能,$ n_f $ = 6或4个基本口味

Gradient flow step-scaling function for SU(3) with $N_f$ = 6 or 4 fundamental flavors

论文作者

Hasenfratz, Anna, Rebbi, Claudio, Witzel, Oliver

论文摘要

重新归一化组(RG)$β$函数的非扰动确定对于了解强耦合和连接晶格模拟和扰动紫外线状态的量规效力系统的性质至关重要。我们选择了具有SU(3)量规组和六个或四个基本口味的QCD样系统,我们研究了它们的逐步缩放$β$函数。在这两种情况下,我们都将模拟推向手性对称性破坏的边界,并研究了$ g^2_ {gf} \ Lessim 8.2 $,带有六个,以及$ g^2_ {gf} \ lyssim 6.6 $,带有四种口味。我们通过比较三个不同的梯度流(GF)来仔细考虑晶格离散误差,对于每个流量,三个操作员以估计了重新归一化的有限体积耦合。我们还考虑了耦合的树高度改进。值得注意的结果是,非扰动确定的$β$函数的运行速度比扰动预测的要慢得多。

Nonperturbative determinations of the renormalization group (RG) $β$ function are crucial to understand properties of gauge-fermion systems at strong coupling and connect lattice simulations and the perturbative ultraviolet regime. Choosing well-understood, QCD-like systems with SU(3) gauge group and either six or four fundamental flavors, we investigate their step-scaling $β$ function. In both cases we push the simulations to the boundary of chiral symmetry breaking and study the regime $g^2_{GF} \lesssim 8.2$ with six, and $g^2_{GF} \lesssim 6.6$ with four flavors. We carefully consider the lattice discretization errors by comparing three different gradient flows (GF), and for each flow three operators to estimate the renormalized finite volume coupling. We also consider the tree level improvement of the coupling. Noteworthy outcome is that nonperturbatively determined $β$ functions run much slower than perturbatively predicted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源