论文标题
标签噪声稳健性的保形预测
Label Noise Robustness of Conformal Prediction
论文作者
论文摘要
我们研究了保形预测的鲁棒性,这是标记噪声的不确定性定量的强大工具。我们的分析解决了回归和分类问题,表征了何时以及如何构建正确涵盖未观察到的无噪音地面真相标签的不确定性集。我们进一步扩展了理论,并制定了正确控制一般损失函数的要求,例如嘈杂的标签,例如假阴性比例。我们的理论和实验表明,每当噪声具有分散性并增加可变性时,具有嘈杂标签的共形预测和风险控制技术就会在干净的地面真相标签上达到保守的风险。在其他对抗性情况下,我们还可以纠正保形预测算法中有界大小的噪声,以确保在没有得分或数据规律性的情况下实现地面真相标签的正确风险。
We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise. Our analysis tackles both regression and classification problems, characterizing when and how it is possible to construct uncertainty sets that correctly cover the unobserved noiseless ground truth labels. We further extend our theory and formulate the requirements for correctly controlling a general loss function, such as the false negative proportion, with noisy labels. Our theory and experiments suggest that conformal prediction and risk-controlling techniques with noisy labels attain conservative risk over the clean ground truth labels whenever the noise is dispersive and increases variability. In other adversarial cases, we can also correct for noise of bounded size in the conformal prediction algorithm in order to ensure achieving the correct risk of the ground truth labels without score or data regularity.