论文标题

许多三角形是退化的度量空间

Metric spaces in which many triangles are degenerate

论文作者

Chvátal, Vašek, Kantor, Ida

论文摘要

里士满和里士满(Amer。Math。Math。104(1997),713--719)证明了以下定理:如果在至少五个点的度量空间中,所有三角形都是退化的,那么该空间是对真实行的子集等等距。我们证明该假设不必要地很强:实际上,$θ(n^2)$适当地放置了退化的三角形。

Richmond and Richmond (Amer. Math. Monthly 104 (1997), 713--719) proved the following theorem: If, in a metric space with at least five points, all triangles are degenerate, then the space is isometric to a subset of the real line. We prove that the hypothesis is unnecessarily strong: In fact, $Θ(n^2)$ suitably placed degenerate triangles suffice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源