论文标题
多政治CFT和高自旋全息图中的无限距离
Infinite distances in multicritical CFTs and higher-spin holography
论文作者
论文摘要
我们研究了高旋转重力的Swampland距离猜想。为此,我们研究了大型向量模型,玻感和费米金的多政治概括,并计算沿选定的重命归量定组轨迹沿高速自旋极限的量子信息距离。与高旋转质量或异常尺寸的预期指数衰减形成鲜明对比的是,我们发现这些模型中的无限距离限制会导致功率状衰变。这表明弦态衰减是基质样理论的特征,而不是向量模型。我们证实了这个概念,研究了Chern-Simons-Master-Master CFT中耦合变化的信息距离,其中类似矩阵的自由度在类似矢量的速率上占主导地位。
We investigate the swampland distance conjecture in higher-spin gravity. To this end, we study multicritical generalizations of large-$N$ vector models, bosonic and fermionic, and we compute the quantum information distance along selected renormalization-group trajectories toward the higher-spin limit. In striking contrast to the expected exponential decay of higher-spin masses or anomalous dimensions, we find that infinite-distance limits in these models lead to a power-like decay. This suggests that stringy exponential decays are characteristic of matrix-like gauge theories, rather than vector models. We corroborate this notion studying the information distance along coupling variations in Chern-Simons-matter CFTs, where matrix-like degrees of freedom dominate over vector-like ones.