论文标题
温和代数的有界派生类别的半双相分解
Semiorthogonal decompositions for bounded derived categories of gentle algebras
论文作者
论文摘要
我们研究了温和代数的有界衍生类别的半双相分解,以及它们如何在这些类别的几何模型中表现出来,该模型由Opper,Plamondon和Schroll构建。我们证明,这种半三相分解与几何模型下面的标记表面的合适切割之间存在一对一的对应关系。我们的主要工具是由于Arnesen,Laking和Pauksztello引起的不可分解的对象之间的基础形态表征。
We study semiorthogonal decompositions of bounded derived categories of gentle algebras and how they are manifested in the geometric model of these categories as constructed by Opper, Plamondon and Schroll. We prove that there is a one-to-one correspondence between such semiorthogonal decompositions and suitable cuts of the marked surface underlying the geometric model. Our main tool is the characterization of basis morphisms between indecomposable objects due to Arnesen, Laking and Pauksztello.