论文标题

关于纠缠在基于qudit的电路压缩中的作用

On the role of entanglement in qudit-based circuit compression

论文作者

Gao, Xiaoqin, Appel, Paul, Friis, Nicolai, Ringbauer, Martin, Huber, Marcus

论文摘要

基于门的通用量子计算是根据两种类型的操作来制定的:局部单量门门,通常很容易实现,并且纠缠的两倍纠缠大门,其忠实的实施仍然是主要的实验挑战之一,因为它需要单个系统之间的控制相互作用。为了充分利用量子硬件,以最有效的方式处理信息至关重要。一个有前途的途径是将较高的系统(Qudits)作为量子信息的基本单位,以用Qudit-Local局部门替换量子的大门的一部分。在这里,我们展示了如何通过使用QUDIT编码来显着降低多Qubit电路的复杂性,我们通过考虑具有确切已知(多Qubit)栅极复杂性的示例性电路来量化。我们讨论了电路压缩的一般原理,在可实现的优势上得出上限和下限,并突出了纠缠和可用门集的关键作用。提供了用于光子和陷阱离子实现的显式实验方案,并证明了两个平台的电路性能的显着预期增益。

Gate-based universal quantum computation is formulated in terms of two types of operations: local single-qubit gates, which are typically easily implementable, and two-qubit entangling gates, whose faithful implementation remains one of the major experimental challenges since it requires controlled interactions between individual systems. To make the most of quantum hardware it is crucial to process information in the most efficient way. One promising avenue is to use higher-dimensional systems, qudits, as the fundamental units of quantum information, in order to replace a fraction of the qubit-entangling gates with qudit-local gates. Here, we show how the complexity of multi-qubit circuits can be lowered significantly by employing qudit encodings, which we quantify by considering exemplary circuits with exactly known (multi-qubit) gate complexity. We discuss general principles for circuit compression, derive upper and lower bounds on the achievable advantage, and highlight the key role played by entanglement and the available gate set. Explicit experimental schemes for photonic as well as for trapped-ion implementations are provided and demonstrate a significant expected gain in circuit performance for both platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源