论文标题

可压缩的Navier-Stokes-BGK模型的局部适应性,在具有指数重量的Sobolev空间

Local well-posedness for the compressible Navier-Stokes-BGK model in Sobolev spaces with exponential weight

论文作者

Choi, Young-Pil, Jung, Jinwook

论文摘要

喷雾是由基础气体中的分散颗粒组成的复杂流。在本文中,我们对由可压缩的Navier-Stokes方程和Boltzmann BGK方程组成的中等厚喷雾剂的方程感兴趣。在这里,两个方程的耦合是通过摩擦(或阻力)力的,该力取决于可压缩流体的密度以及颗粒与流体之间的相对速度。对于Navier-Stokes-BGK系统,我们在具有指数重量的Sobolev空间中建立了解决方案的存在和独特性。

Sprays are complex flows constituted of dispersed particles in an underlying gas. In this paper, we are interested in the equations for moderately thick sprays consisting of the compressible Navier-Stokes equations and Boltzmann BGK equation. Here the coupling of two equations is through a friction (or drag) force which depends on the density of compressible fluid and the relative velocity between particles and fluid. For the Navier-Stokes-BGK system, we establish the existence and uniqueness of solutions in Sobolev spaces with exponential weight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源