论文标题

连续的PDE动力学预测与隐式神经表示

Continuous PDE Dynamics Forecasting with Implicit Neural Representations

论文作者

Yin, Yuan, Kirchmeyer, Matthieu, Franceschi, Jean-Yves, Rakotomamonjy, Alain, Gallinari, Patrick

论文摘要

有效数据驱动的PDE预测方法通常依赖于固定的空间和 /或时间离散化。这增加了现实世界中的限制,例如天气预报,在这种预测中,需要在任意时空位置进行灵活的外推。我们通过引入一种新的数据驱动方法Dino来解决此问题,该方法通过空间连续函数的连续时间动力学对PDE的流量进行建模。这是通过将空间观察嵌入空间观察中,独立于通过隐式神经表示在一个由学习的颂歌驱动的小潜在空间中通过隐式神经表示来实现的。这种时间和空间的独立灵活处理使Dino成为结合以下优势的第一个数据驱动模型。它在任意的空间和时间位置推断;它可以从稀疏的不规则网格或歧管中学习;在测试时,它概括为新的网格或决议。在代表性PDE系统的各种具有挑战性的概括方案中,Dino优于替代性神经PDE预报器。

Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源