论文标题
在原子厚和扩展的2-Metal-Organit框架上的铁磁
Ferromagnetism on an atom-thick and extended 2D-metal-organic framework
论文作者
论文摘要
铁磁性(FM)是永久磁铁,数据存储和其他技术的基石,这些技术通过在标准应用和设备中的实施而直接影响我们的日常生活。当将散装材料降低到其二维(2D)磁各向同性形式中时,Mermin-Wagner定理排除了在有限温度下短期交换相互作用介导的集体状态。有趣的是,当材料中存在明显的磁各向异性时,该预测会失败,这是最近在单层范德华晶体中所证明的。在后者之前,在金属支架上生长的单层金属有机框架(MOF)是最早获得2D-FM的候选者之一。如此高的期望是基于2D-MOF磁心中心的化学和间距控制,有机接头的可调性以及所显示的丰富自组装架构。但是,尽管有很多尝试,但在2D-MOF中扩展了FM在实验上难以捉摸。在这项工作中,我们证明了扩展的合作FM发生在原子厚的2D-MOF中,该原子由9,10-二氰基蒽(DCA)分子和Fe Adatoms组成,并在AU上生长(111)。我们通过最先进的第一原理计算认可的实验多技术方法来证明这一点。特别是,这2D铁磁铁遵循TC〜35 K的一阶跃迁,该过渡是由主要通过分子接头(J = 2 MEV)的交换相互作用驱动的,并表现出平面外正方形的滞后循环。我们2D-MOF的严格周期性使我们能够设想制造超密集的单原子磁性记忆,并为探索周期性磁性2D模型开辟了道路,这可能会大大增加基本的超级磁性极限。
Ferromagnetism (FM) is the cornerstone of permanent magnets, data storage and other technologies that directly impact our everyday life by their implementation in standard applications and devices. When downscaling bulk materials into their two-dimensional (2D) magnetic isotropic form, the Mermin-Wagner theorem precludes this collective state mediated by short-range exchange interactions at finite temperatures. Interestingly, this prediction fails when significant magnetic anisotropy is present in the material, as recently demonstrated in single layered van der Waals crystals. Before the latter, single layer metal-organic frameworks (MOFs) grown on metallic supports were one of the earliest candidates for achieving 2D-FM. Such high expectations were based on the chemical and spacing control of the 2D-MOF magnetic centers, the tunability of the organic linkers and the rich self-assembled architectures displayed. However, despite many attempts, extended FM in 2D-MOFs has been experimentally elusive. In this work, we demonstrate that extended, cooperative FM takes place in an atom thick 2D-MOF consisting of 9,10-dicyanoanthracene (DCA) molecules and Fe adatoms grown on Au(111). We show this by means of an experimental multitechnique approach that is endorsed by state-of-the art first-principles calculations. Particularly, this 2D ferromagnet follows a first order transition with TC ~ 35 K, which is driven by exchange interactions mainly through the molecular linkers (J=2 meV) and exhibits an out-of-plane square-like hysteresis loop. The strict periodicity of our 2D-MOF allows us to envision the fabrication of ultra-dense single atom magnetic memories and opens the way to explore periodic magnetic 2D-models that could considerably increase the fundamental superparamagnetic limit.