论文标题

使用不匹配的神经网络优化数值相对性模拟的位置

Optimizing the Placement of Numerical Relativity Simulations using a Mismatch Predicting Neural Network

论文作者

Ferguson, Deborah

论文摘要

合并紧凑物体的引力波观察变得司空见惯,并且随着探测器的改善和重力波源变得更加多样化,拥有密集和膨胀的模板库的预测引力波形越来越重要。由于数值相对论是完全解决相对质量系统的一般相对性的非线性合并制度的唯一方法,因此数值相对性模拟对于重力波检测和分析至关重要。这些模拟在计算上很昂贵,每个模拟都将一个点放置在二进制黑洞合并的高维参数空间内。这使得拥有一种以最佳方式使用我们的计算资源的方式放置新模拟的方法,同时确保对参数空间的覆盖范围非常重要。完成此操作需要在执行仿真之前预测一组新参数的影响。为此,本文介绍了一个神经网络,以预测两个二元系统的重力波之间的不匹配。然后,我们展示了如何提出将提供最大好处的新数值相对性模拟。我们还使用网络来识别现有公共目录中的差距,并在二进制黑洞参数空间中识别脱落。

Gravitational wave observations from merging compact objects are becoming commonplace, and as detectors improve and gravitational wave sources become more varied, it is increasingly important to have dense and expansive template banks of predicted gravitational waveforms. Since numerical relativity is the only way to fully solve the non-linear merger regime of general relativity for comparably massed systems, numerical relativity simulations are critical for gravitational wave detection and analysis. These simulations are computationally expensive, with each simulation placing one point within the high dimensional parameter space of binary black hole coalescences. This makes it important to have a method of placing new simulations in ways that use our computational resources optimally while ensuring sufficient coverage of the parameter space. Accomplishing this requires predicting the impact of a new set of parameters before performing the simulation. To this effect, this paper introduces a neural network to predict the mismatch between the gravitational waves of two binary systems. Using this network, we then show how we can propose new numerical relativity simulations that will provide the most benefit. We also use the network to identify gaps in existing public catalogs and identify degeneracies in the binary black hole parameter space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源