论文标题
利用超paramagnets中的概率切换来用于编码神经形态系统中的时间信息
Leveraging Probabilistic Switching in Superparamagnets for Temporal Information Encoding in Neuromorphic Systems
论文作者
论文摘要
脑启发的计算 - 利用神经科学原理,基于大脑在解决认知任务方面无与伦比的效率的基础 - 已成为解决当今深度学习所面临的几种算法和计算挑战的有希望的途径。但是,当前的神经形态计算研究是由我们发达的关于执行确定性操作的计算平台上的深度学习算法的概念所驱动的。在本文中,我们认为,在概率神经形态系统中执行编码时间信息的不同途径可能有助于解决该领域的一些当前挑战。本文认为超级磁性隧道连接是一种潜在的途径,以实现新一代的脑启发计算,从而结合了来自计算神经科学的两个互补见解的方面和相关优势 - 信息如何编码以及计算方式在大脑中如何发生。硬件 - Algorithm共同设计分析展示了$ 97.41 \%$ $ $ spiking网络的精度,启用了MNIST数据集上的随机峰值网络,由于时间信息编码,具有很高的峰值稀疏性。
Brain-inspired computing - leveraging neuroscientific principles underpinning the unparalleled efficiency of the brain in solving cognitive tasks - is emerging to be a promising pathway to solve several algorithmic and computational challenges faced by deep learning today. Nonetheless, current research in neuromorphic computing is driven by our well-developed notions of running deep learning algorithms on computing platforms that perform deterministic operations. In this article, we argue that taking a different route of performing temporal information encoding in probabilistic neuromorphic systems may help solve some of the current challenges in the field. The article considers superparamagnetic tunnel junctions as a potential pathway to enable a new generation of brain-inspired computing that combines the facets and associated advantages of two complementary insights from computational neuroscience -- how information is encoded and how computing occurs in the brain. Hardware-algorithm co-design analysis demonstrates $97.41\%$ accuracy of a state-compressed 3-layer spintronics enabled stochastic spiking network on the MNIST dataset with high spiking sparsity due to temporal information encoding.