论文标题

评估分类学和神经嵌入方法用于计算语义相似性

Evaluation of taxonomic and neural embedding methods for calculating semantic similarity

论文作者

Yang, Dongqiang, Yin, Yanqin

论文摘要

建模语义相似性在词汇语义应用中起着基本作用。计算语义相似性的一种自然方法是访问手工制作的语义网络,但是在分布矢量空间中也可以预期相似性预测。即使在深层神经语言模型中,相似性计算仍然是一项具有挑战性的任务。我们首先研究了衡量分类学相似性的流行方法,包括仅在分类法中采用语义关系的边缘计数,以及估计概念特异性的复杂方法。我们进一步推断了建模分类学相似性的三个加权因素。为了研究分类学和分布相似性度量之间的不同机制,我们从单词频率,多义人性程度和相似性强度的角度从面对面的比较与人类相似性判断进行了正面比较。我们的发现表明,如果不微调统一距离,分类学相似性度量可以取决于最短路径长度,这是预测语义相似性的主要因素。与分布语义相反,边缘计数没有使用中的感觉分布偏见,并且可以从字面上和隐喻上衡量单词相似性。在相似性预测中与概念关系改造神经嵌入的协同作用可能表明一种新的趋势来利用知识基础在转移学习上。看来,在不同的单词频率,多义度和相似性强度之间的计算语义相似性上仍然存在很大的差距。

Modelling semantic similarity plays a fundamental role in lexical semantic applications. A natural way of calculating semantic similarity is to access handcrafted semantic networks, but similarity prediction can also be anticipated in a distributional vector space. Similarity calculation continues to be a challenging task, even with the latest breakthroughs in deep neural language models. We first examined popular methodologies in measuring taxonomic similarity, including edge-counting that solely employs semantic relations in a taxonomy, as well as the complex methods that estimate concept specificity. We further extrapolated three weighting factors in modelling taxonomic similarity. To study the distinct mechanisms between taxonomic and distributional similarity measures, we ran head-to-head comparisons of each measure with human similarity judgements from the perspectives of word frequency, polysemy degree and similarity intensity. Our findings suggest that without fine-tuning the uniform distance, taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity; in contrast to distributional semantics, edge-counting is free from sense distribution bias in use and can measure word similarity both literally and metaphorically; the synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning. It appears that a large gap still exists on computing semantic similarity among different ranges of word frequency, polysemous degree and similarity intensity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源