论文标题

适当的Landau-Ginzburg潜力,固有的镜子对称性和相对镜图

The proper Landau--Ginzburg potential, intrinsic mirror symmetry and the relative mirror map

论文作者

You, Fenglong

论文摘要

如果是光滑的log calabi-yau对$(x,d)$,我们使用固有的镜像对称结构来定义镜像适当的Landau-Ginzburg潜力,并表明它是两点相对Gromov的生成函数,即$(x,d)$的两点相对不变性。我们计算具有几个负接触顺序的某些相对不变性,然后应用\ cite {fty}的相对镜定理来计算两点相对不变式。当$ d $是nef时,我们计算了适当的兰道 - 吉茨堡的潜力,并表明它是相对镜像的倒数。专门研究感谢您的$ x $的情况,这意味着\ cite {grz}的猜想是,适当的landau-ginzburg电位是开放式镜像图。当$ x $是一种狂热的品种时,适当的潜力与正规量子时期的抗衍生物有关。

Given a smooth log Calabi--Yau pair $(X,D)$, we use the intrinsic mirror symmetry construction to define the mirror proper Landau--Ginzburg potential and show that it is a generating function of two-point relative Gromov--Witten invariants of $(X,D)$. We compute certain relative invariants with several negative contact orders, and then apply the relative mirror theorem of \cite{FTY} to compute two-point relative invariants. When $D$ is nef, we compute the proper Landau--Ginzburg potential and show that it is the inverse of the relative mirror map. Specializing to the case of a toric variety $X$, this implies the conjecture of \cite{GRZ} that the proper Landau--Ginzburg potential is the open mirror map. When $X$ is a Fano variety, the proper potential is related to the anti-derivative of the regularized quantum period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源