论文标题
XR-RF成像由软件定义的元信息和机器学习启用:基础视觉,技术和挑战
XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges
论文作者
论文摘要
我们提出了一种新的扩展现实方法(XR),称为IcopyWaves,该方法试图提供自然的低延迟操作和成本效益,克服了现有解决方案所面临的关键可扩展性问题。 IcopyWaves是通过新兴的PWES启用的,这是一项最近提出的无线通信技术。在智能(元)表面赋予的能力下,PWES将波传播现象转化为软件定义的过程。我们利用PWES到i)创建,然后ii)选择性地将对象的散射RF波兰从空间中的一个位置复制到另一个位置到另一个位置,在该位置,通过FPGA加速的机器学习模块将其转换为使用PWEDRIVIN,RF Imaging Princaral(XR-RF)的XR耳机的视觉输入。这使得XR系统的操作在物理层中有限,因此具有最小的端到端潜伏期的前景。在大距离内,使用RF-to-Fiber/Fiber-to-RF来提供中间连接。本文提供了有关IcopyWaves系统体系结构和工作流程的教程。提供了通过模拟实现的概念验证实现,证明了iCopywaves生成的计算机图形中有挑战的对象的重建。
We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions. iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent (meta)surfaces, PWEs transform the wave propagation phenomenon into a software-defined process. We leverage PWEs to i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR system whose operation is bounded in the physical layer and, hence, has the prospects for minimal end-to-end latency. Over large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES produced computer graphics.