论文标题

生物识别识别的两头眼分级方法

Two-headed eye-segmentation approach for biometric identification

论文作者

Lazarski, Wiktor, Zieba, Maciej, Jeanneau, Tanguy, Zillig, Tobias, Brendel, Christian

论文摘要

基于虹膜的识别系统是人识别最受欢迎的方法之一。这样的系统需要优质的分割模块,这些模块理想地识别了不同眼部成分的区域。本文介绍了新的两头架构,其中使用两个单独的解码模块对眼睛组件和睫毛进行了分割。此外,我们通过采用不同的培训损失来调查各种培训方案。多亏了两头方法,我们还能够使用凸面先验检查模型的质量,从而实现了分段形状的凸度。我们对现实状况的各种学习方案进行了广泛的评估,高分辨率近红外虹膜图像。

Iris-based identification systems are among the most popular approaches for person identification. Such systems require good-quality segmentation modules that ideally identify the regions for different eye components. This paper introduces the new two-headed architecture, where the eye components and eyelashes are segmented using two separate decoding modules. Moreover, we investigate various training scenarios by adopting different training losses. Thanks to the two-headed approach, we were also able to examine the quality of the model with the convex prior, which enforces the convexity of the segmented shapes. We conducted an extensive evaluation of various learning scenarios on real-life conditions high-resolution near-infrared iris images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源