论文标题
半综合的brauer-manin障碍物和四叉骨架对
Semi-integral Brauer-Manin obstruction and quadric orbifold pairs
论文作者
论文摘要
我们研究了两个半综合点概念的局部全球原则,称为Campana Points和Darmon Points。特别是,我们开发了Manin的经典版本和Colliot-Thélène和Xu开发的整体版本之间的Brauer-Manin障碍物的半整合版本。我们在两个与二次突出的天然相关的Orbifold家族中确定了局部全球原则的状态和对其障碍的状态。此外,我们建立了一个定量结果,以测量半综合brauer-manin障碍物的失败,以说明其仿射四边形不可或缺的对应物。
We study local-global principles for two notions of semi-integral points, termed Campana points and Darmon points. In particular, we develop a semi-integral version of the Brauer-Manin obstruction interpolating between Manin's classical version for rational points and the integral version developed by Colliot-Thélène and Xu. We determine the status of local-global principles, and obstructions to them, in two families of orbifolds naturally associated to quadric hypersurfaces. Further, we establish a quantitative result measuring the failure of the semi-integral Brauer-Manin obstruction to account for its integral counterpart for affine quadrics.