论文标题
在Gorenstein订单上的稳定类别的Gorenstein-Progentive模块中,不可分解的纯注射物体
Indecomposable pure-injective objects in stable categories of Gorenstein-projective modules over Gorenstein orders
论文作者
论文摘要
我们给出了gorenstein-progentive模块的Auslander-Ringel-tachikawa类型的结果。特别是,当且仅当Gorenstein-Projective模块稳定类别中的每个不可分解的纯纯注射对象时,我们才证明,完整的Gorenstein顺序是有限的Cohen-Macaulay表示类型。
We give a result of Auslander-Ringel-Tachikawa type for Gorenstein-projective modules over a complete Gorenstein order. In particular, we prove that a complete Gorenstein order is of finite Cohen-Macaulay representation type if and only if every indecomposable pure-injective object in the stable category of Gorenstein-projective modules is compact.