论文标题

以太坊交易网络中用于网络钓鱼检测的量子古典ML算法的经典合奏

Classical ensemble of Quantum-classical ML algorithms for Phishing detection in Ethereum transaction networks

论文作者

Ray, Anupama, Guddanti, Sai Sakunthala, Ajith, Vishnu, Vinayagamurthy, Dhinakaran

论文摘要

就其锁定在其中的总货币价值而言,以太坊是最有价值的区块链网络之一,可以说是最活跃的网络,其中展示了研究和应用中新的区块链创新。但是,这也导致以太坊网络容易受到各种威胁和攻击的影响,以试图获得不合理的优势或破坏用户的价值。即使使用最先进的经典ML算法,检测此类攻击仍然很难。这促使我们建立了一种量子古典算法的混合系统,从而改善了金融交易网络中的网络钓鱼检测。本文介绍了经典和量子算法的经典集合管道,以及一项详细的研究基准测试了现有的量子机学习算法,例如量子支持向量机和变分量子分类器。借助当前一代的量子硬件,较小的数据集更适合QML型号,并且大多数研究限于数百个样本。但是,我们通过12K交易节点的测试数据进行了不同的数据大小,并报告结果,这是最佳的作者知道,最大的QML实验迄今为止在任何实际量子硬件上运行。量子古典模型的经典集合改善了宏F-评分和网络钓鱼F得分。一个关键的观察结果是QSVM不断给出较低的假阳性,因此与任何其他经典或量子网络相比,对于任何异常检测问题,QSVM始终是首选的。当单独使用或通过同一型号的包装或与其他经典/量子模型结合使用时,对于QSVM是正确的,这使其成为迄今为止最有利的量子算法。提出的合奏框架是通用的,可以应用于任何分类任务

Ethereum is one of the most valuable blockchain networks in terms of the total monetary value locked in it, and arguably been the most active network where new blockchain innovations in research and applications are demonstrated. But, this also leads to Ethereum network being susceptible to a wide variety of threats and attacks in an attempt to gain unreasonable advantage or to undermine the value of the users. Even with the state-of-art classical ML algorithms, detecting such attacks is still hard. This motivated us to build a hybrid system of quantum-classical algorithms that improves phishing detection in financial transaction networks. This paper presents a classical ensemble pipeline of classical and quantum algorithms and a detailed study benchmarking existing Quantum Machine Learning algorithms such as Quantum Support Vector Machine and Variational Quantum Classifier. With the current generation of quantum hardware available, smaller datasets are more suited to the QML models and most research restricts to hundreds of samples. However, we experimented on different data sizes and report results with a test data of 12K transaction nodes, which is to the best of the authors knowledge the largest QML experiment run so far on any real quantum hardware. The classical ensembles of quantum-classical models improved the macro F-score and phishing F-score. One key observation is QSVM constantly gives lower false positives, thereby higher precision compared with any other classical or quantum network, which is always preferred for any anomaly detection problem. This is true for QSVMs when used individually or via bagging of same models or in combination with other classical/quantum models making it the most advantageous quantum algorithm so far. The proposed ensemble framework is generic and can be applied for any classification task

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源