论文标题
混合CNN -Interpreter:解释基于CNN的模型的本地和全球环境
Hybrid CNN -Interpreter: Interpret local and global contexts for CNN-based Models
论文作者
论文摘要
卷积神经网络(CNN)模型已经在各个领域的性能方面进行了进步,但是缺乏可解释性是在接受和部署AI辅助应用程序操作过程中保证和监管的主要障碍。输入可解释性有许多重点是分析输入输出关系的作品,但是在当前主流解释性方法中尚未阐明模型的内部逻辑。在这项研究中,我们通过以下方式提出了一种新型的混合CNN互化器:(1)一种原始的正向传播机制,用于检查局部可解释性的特定层特异性预测结果。 (2)一种新的全局解释性,指示特征相关性和滤波器的重要性效果。通过将本地和全球解释性结合在一起,混合CNN Interpreter使我们能够在整个学习过程中对模型上下文有了可靠的理解和监视,并具有详细且一致的表示。最后,已证明提出的解释性适应了各种基于CNN的模型结构。
Convolutional neural network (CNN) models have seen advanced improvements in performance in various domains, but lack of interpretability is a major barrier to assurance and regulation during operation for acceptance and deployment of AI-assisted applications. There have been many works on input interpretability focusing on analyzing the input-output relations, but the internal logic of models has not been clarified in the current mainstream interpretability methods. In this study, we propose a novel hybrid CNN-interpreter through: (1) An original forward propagation mechanism to examine the layer-specific prediction results for local interpretability. (2) A new global interpretability that indicates the feature correlation and filter importance effects. By combining the local and global interpretabilities, hybrid CNN-interpreter enables us to have a solid understanding and monitoring of model context during the whole learning process with detailed and consistent representations. Finally, the proposed interpretabilities have been demonstrated to adapt to various CNN-based model structures.