论文标题
关于换向子小组的重新重新
On a reformulation of the commutator subgroup
论文作者
论文摘要
对于Semigroup $ s $,$ S $上的交流$σ_{orenient} $,以及“两个取消的通勤一致性和群体图”中引入了$ s $的$ s $ $ s $的$ s $”,Semigroup Forum(2011)82:338-353。在这里,我们证明,当Semigroup实际上是$ g $的组时,便利($ g $)是换向子组$ [g,g] $和$ g /σ_{orient} $是Abelian $ g / [g,g] $。
For semigroup $S$, a commutative congruence $σ_{orient}$ on $S$ and a subsemigroup Orientable($S$) of $S$ were introduced in "Two cancellative commutative congruences and group diagrams", Semigroup Forum (2011) 82: 338-353. Here we demonstrate that when the semigroup is in fact a group $G$, then Orientable($G$) is the commutator subgroup $[G,G]$ and $ G / σ_{orient}$ is the abelian quotient group $G / [G,G]$.